Egyptian Multiplication

We have to memorize multiplication tables. Egyptian did not.

Egyptian Multiplication

- Unique method which they correctly viewed as repeated addition.
- Based on doubling and is also known as the didactic method.
- Starting with one and doubling, they obtained a never-ending sequence of numbers: $1,2,4,8,16,32$, 64, 128, ...
- These numbers are the powers of two: $2^{0}, 2^{1}, 2^{2}, 2^{3}$, $2^{4}, 2^{5}, 2^{6}, 2^{7}, \ldots$

Egyptian Multiplication

- Egyptians figured out is that any integer can be written as a sum of the powers of two without repeating any of them
- For example,
- $11=8+2+1$

Try 23, 44 and 158

- $23=16+4+2+1$
- $44=32+8+4$
- $158=128+16+8+4+2$

Egyptian Multiplication

- Suppose we want to multiply 12×17.
- Start with 1 and 17.
- Keep doubling both numbers until the right side gets as close as possible to, but not larger than 12.

Egyptian Multiplication

- We want the powers of 2 that add to give us 12 .
- We want 12 because we are multiplying 17×12

17	1
34	2
$* 68$	4
$* 136$	8

Egyptian Multiplication

- To obtain the answer, add the corresponding left side numbers of the starred positions.
- In this case,

$$
\checkmark 136+68=204
$$

- So, $12 \times 17=204$.

Why it works?

- This ingenious method relies on the distributive law $a \times(b+c)=a \times b+a \times c$
- Since $12=4+8$, we can write

$$
17 \times 12=17 \times(4+8)=17 \times 4+17 \times 8=68+136=204
$$

- Not bad for thousands of years ago!

Let's multiply 49 and 61 together.

61|1*
61+61=122 |2
$122+122=244 \mid 4$
$244+244=488 \mid 8$
488+488=976|16 *
976+976=1952|32 *
What numbers combine to give us 49 ?
Now $=(32+16+1) \cdot 61$
Which is $=(32 \cdot 61)+(16 \cdot 61)+(1 \cdot 61)$
$=1952+976+61$
= 2989

Try this method and multiply 36 and 23 together.

36 |1*
36+36=72|2*
$72+72=144 \mid 4$ *
$144+144=288 \mid 8$
$288+288=576 \mid 16$ *
What numbers combine to give us 23 ?

$$
\begin{aligned}
& \text { Now } \quad=(16+4+2+1) \cdot 36 \\
& \begin{aligned}
\text { Which is } & =(16 \cdot 36)+(4 \cdot 36)+(2 \cdot 36)+(1 \cdot 36) \\
& =576+144+72+36 \\
& =828
\end{aligned}
\end{aligned}
$$

Egyptian Division

- Suppose we want to divide 25 by 4.
- Start with 1 and the divisor 4.
- Keep doubling both numbers until the right side gets as close as possible to, but not | 4 | 1 | |
| :---: | :---: | :---: |
| 8 | 2 | $*$ |
| 16 | 4 | $*$ | larger than 25.

Egyptian Division

- Subtract the right side numbers from 25 until you can no longer subtract.
- Star the right side numbers that are being subtracted.

$$
\begin{aligned}
& \checkmark 25-16=9 \\
& \checkmark 9-8=1
\end{aligned}
$$

Egyptian Division

- What is left is the remainder, in this case, the remainder is 1.
- To obtain the answer or quotient, add the corresponding left side numbers of the starred positions.

$\checkmark 4+2=6$

Egyptian Division

- Thus, $25 \div 4=6 R 1$.
- The Egyptians would have used unit fractions to write the answer, so for them

$$
25 \div 4=6 \frac{1}{4}=6+\frac{1}{4}
$$

Let's try division the same way: 527 divided by 23

23
$23+23=46$
$46+46=92$
$92+92=184$
184+184=368
$\mid 1$
|2 *
|4*
|16 *
$368+368$ stop more than 527
527-368=159 therefore we know that there are at least 16 23s in 527
159-92=67 therefore we know that there are at least 4 more 23 s in 527
$67-46=21$ therefore we know that there are 2 more 23 s in 527 with remainder 21.

So, we can say
$527=368+92+46+21=$

$$
=(16+4+2) 23+21
$$

Therefore the quotient is 22 and the remainder is 21 .

Try 432 divided by 31.

31	$\mid 1 *$
$31+31=62$	12
$62+62=124$	$\mid 4 *$
$124+124=248$	$18 *$
$248+248=496$	stop more than 432

$432-248=184$ there are at least 831 s in 432
184-124=60 there are at least 4 more 31s in 432
$60-31=29$ there is 1 more 31 s in 432 with remainder 29
So, we can say

$$
\begin{aligned}
432 & =248+124+31+29= \\
& =(8+4+1) 31+29
\end{aligned}
$$

Therefore the quotient is 13 and the remainder is 29 .

