

Calculus

Rene Descartes 1596-1650

Fermat

- Fermat used a method called adequating, in which he would modify the problem slightly to give a different solution, and then modify again, to find extreme values.
- Given a point B on a curve the tangent to have been drawn, intersecting the axis at E.
- Let $O I$ be drawn parallel to $B C$ at a distance e from it, intersecting the curve at O^{\prime}.
- Then, on the one hand, the subtangent $E C$ is to $B C$ as $E I$, i.e. $(E C-e)$, is to $O I$.

$$
\frac{a}{a+e}=\frac{Q P}{Q^{\prime} S}
$$

Fermat

We need to find the slope of the tangent line of the function x^{2} at the point $(1,1)$

Fermat compared this to the idea of similar triangles. Therefore we can state the following proportion.

$$
\frac{a}{a+e}=\frac{f(1)}{f(1+e)}
$$

because we are working with the function $y=x^{2}$

$$
\frac{a}{a+e}=\frac{1^{2}}{(1+e)^{2}}
$$

$$
a+e=a(1+e)^{2}
$$

$$
a+e=a+2 a e+a e^{2}
$$

$$
e=2 a e+a e^{2}
$$

Divide both sides by e
$1=2 a+a e$ Now, e is very small

Let e be so small that it is zero. (they did not have limits)

Therefore,
the length of $a=\frac{1}{2}$
Since Q is the point $(1,0)$ and $a=1 / 2$ then R is $1-(1 / 2)=$ $1 / 2$ then R is $(1 / 2,0)$

Therefore we just need to write an equation of a line that passes through the point $s(1 / 2,0)$ and $(1,1)$.

$$
y=2 x-1
$$

Let's try another one.

$y=6 x^{2}+6 x$ at the point $(1,12)$

$$
\frac{a}{a+e}=\frac{f(1)}{f(1+e)}
$$

$$
\frac{a}{a+e}=\frac{6(1)^{2}+6(1)}{6(1+e)^{2}+6(1+e)}
$$

$$
\frac{a}{a+e}=\frac{12}{6(1+e)^{2}+6(1+e)}
$$

$$
12 a+12 e=6 a(1+e)^{2}+6 a(1+e)
$$

$$
12 a+12 e=12 a+18 a e+6 a e^{2}
$$

$$
-12 a \quad-12 a
$$

$$
\begin{aligned}
\frac{12 e}{12 e} & =\frac{18 a e}{12 e}+\frac{6 a e^{2}}{12 e} \\
1 & =\frac{3}{2} a+\frac{1}{2} a e \quad \text { let e be so small it equals } 0 \\
1 & =\frac{3}{2} a \\
\left(\frac{2}{3}\right) 1 & =\left(\frac{2}{3}\right)\left(\frac{3}{2}\right) a \\
a & =\frac{2}{3}
\end{aligned}
$$

My point x - a gives us: $\frac{1}{3}$
The two points we will use are now:
$(1,12)$ and $(1 / 3,0)$ therefore the line is:

$$
\begin{aligned}
\text { Slope } & =\frac{12-0}{1-\frac{1}{3}}=18 \\
y & =m x+b \\
12 & =18 x+b \\
12 & =18(1)+b \\
-6 & =b \\
y & =18 x-6
\end{aligned}
$$

Find the center of s circle whose center is on the y-axis, such that it is tangent to the parabola .

We need the equation of a circle.

$$
\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=r^{2}
$$

We need a center, and a radius.

Center ($0, \mathrm{c}$) and radius is ?

Length between ($0, \mathrm{c}$) and (1,1).

$$
\begin{aligned}
& r=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& r=\sqrt{1+(c-1)^{2}} \\
& r^{2}=1+(c-1)^{2}
\end{aligned}
$$

Decartes

Now let's substitute into the formula of a circle.

$$
\begin{aligned}
& \left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=r^{2} \\
& (x-0)^{2}+(y-c)^{2}=(c-1)^{2}+1
\end{aligned}
$$

Since we know the point is on the circle, $y=x^{2}$ Substitute in for x and simplify.

$$
\begin{aligned}
& y+y^{2}-2 y c+c^{2}=c^{2}-2 c+2 \\
& y^{2}-2 y c+y+2 c-2=0
\end{aligned}
$$

$$
y^{2}+(-2 c+1) y+2 c-2=0
$$

Because it is a tangent, we want their to be only one solution. How do we find c such that there is only one solution?
The discriminate must equal 0 .

$$
\begin{aligned}
& A=1 \quad B=-2 c+1 \quad C=2 c-2 \\
& B^{2}-4 A C \\
& (-2 c+1)^{2}-4(1)(2 c-2)=0 \\
& 4 c^{2}-12 c+9=0 \\
& (2 c-3)^{2}=0 \quad c=1.5 \\
& \text { center }(0,1.5)
\end{aligned}
$$

DeCartes

Now let's substitute into the formula of a circle.

$$
\begin{aligned}
& \left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=r^{2} \\
& (x-0)^{2}+(y-c)^{2}=(c-1)^{2}+1
\end{aligned}
$$

Since we know the point is on the circle, $y=x^{2}$ Substitute in for x and simplify.

$$
\begin{aligned}
& y+y^{2}-2 y c+c^{2}=c^{2}-2 c+2 \\
& y^{2}-2 y c+y+2 c-2=0
\end{aligned}
$$

