# • • • Algebra Tiles

#### • Arabic/Islamic Mathematics

- Algebra gave mathematics a whole new development path so much broader in concept to that which had existed before, and provided a vehicle for future development of the subject.
- Another important aspect of the introduction of algebraic ideas was that it allowed mathematics to be applied to itself in a way which had not happened before.
- All of this was done despite not using symbols.

#### • Arabic/Islamic Mathematics

- Algebra gave mathematics a whole new development path so much broader in concept to that which had existed before, and provided a vehicle for future development of the subject.
- Another important aspect of the introduction of algebraic ideas was that it allowed mathematics to be applied to itself in a way which had not happened before.
- All of this was done despite not using symbols.

Statue of Muhammad ibn Mūsā al-Khwārizmī, sitting in front of Khiva. north west of Uzbekistan.

- Sometimes called the "Father of Algebra".
- His most important work entitled *Al-kitāb* al-muhtasar fī hisāb al-jabr wa-l-muqābala was written around 825.



- The word algebra we use today comes from *al-jabr* in the title.
- The translated title is "The Condensed Book on the Calculation of al-Jabr and al-Muqabala."



- The word *al-jabr* means "restoring", "reunion", or "completion" which is the process of transferring negative terms from one side of an equation to the other.
- The word *al-muqabala* means "reduction" or "balancing" which is the process of combining like terms on the same side into a single term or the cancellation of like terms on opposite sides of an equation.

- He classified the solution of quadratic equations and gave geometric proofs for completing the square.
- This early Arabic algebra was still at the primitive rhetorical stage No symbols were used and no negative or zero coefficients were allowed.
- He divided quadratic equations into three cases

 $x^2 + ax = b$ ,  $x^2 + b = ax$ , and  $x^2 = ax + b$  with only positive coefficients.

- Solve  $x^2 + 10x = 39$ .
- Construct a square having sides of length x to represent  $x^2$ .
- Then add 10x to the  $x^2$ , by dividing it into 4 parts each representing 10x/4.
- Add the 4 little  $10/4 \times 10/4$  squares, to make a larger x + 10/2 side square.

#### • • Completing the Square

- o By computing the area of the square in two ways and equating the results we get the top equation at the right.
- Substituting the original equation and using the fact that  $a^2 = b$  implies  $a = \sqrt{b}$ .

$$\left(x + \frac{10}{2}\right)^2 = \left(x^2 + 10x\right) + 4\left(\frac{10}{4}\right)^2$$

$$= 39 + \left(\frac{10}{2}\right)^2$$

$$= 39 + 25 = 64$$

$$\Rightarrow x + \frac{10}{2} = 8$$

$$\Rightarrow x = 3$$

### • • Algebra Tiles

- Manipulatives used to enhance student understanding of subject traditionally taught at symbolic level.
- Provide access to symbol manipulation for students with weak number sense.
- Provide geometric interpretation of symbol manipulation.

## • • Algebra Tiles

- Support cooperative learning, improve discourse in classroom by giving students objects to think with and talk about.
- When I listen, I hear.
- o When I see, I remember.
- But when I do, I understand.

#### • • Algebra Tiles

- Algebra tiles can be used to model operations involving integers.
- Let the small yellow square represent +1 and the small red square (the flipside) represent -1.

 The yellow and red squares are additive inverses of each other.

#### Zero Pairs

- Called zero pairs because they are additive inverses of each other.
- When put together, they cancel each other out to model zero.



#### • • Addition of Integers

- Addition can be viewed as "combining".
- Combining involves the forming and removing of all zero pairs.
- For each of the given examples, use algebra tiles to model the addition.
- Draw pictorial diagrams which show the modeling.

### • • Addition of Integers

$$(+3) + (+1) =$$

$$(-2) + (-1) =$$

# Addition of Integers

$$(+3) + (-1) =$$

$$(+4) + (-4) =$$

 After students have seen many examples of addition, have them formulate rules.

- Integer multiplication builds on whole number multiplication.
- Use concept that the multiplier serves as the "counter" of sets needed.
- For the given examples, use the algebra tiles to model the multiplication. Identify the multiplier or counter.
- Draw pictorial diagrams which model the multiplication process.

 The counter indicates how many rows to make. It has this meaning if it is positive.

$$(+2)(+3) =$$
 $(+3)(-4) =$ 

 If the counter is negative it will mean "take the opposite of." (flip-over)

- After students have seen many examples, have them formulate rules for integer multiplication.
- Have students practice applying rules abstractly with larger integers.

- Like multiplication, division relies on the concept of a counter.
- Divisor serves as counter since it indicates the number of rows to create.
- For the given examples, use algebra tiles to model the division. Identify the divisor or counter. Draw pictorial diagrams which model the process.

$$(+6)/(+2) =$$

 A negative divisor will mean "take the opposite of." (flip-over)

$$(+10)/(-2) =$$

$$(-12)/(-3) =$$

 After students have seen many examples, have them formulate rules.

- Algebra tiles can be used to explain and justify the equation solving process. The development of the equation solving model is based on two ideas.
- Variables can be isolated by using zero pairs.
- Equations are unchanged if equivalent amounts are added to each side of the equation.

 Use the green rectangle as X and the red rectangle (flip-side) as –X (the opposite of X).

$$X + 2 = 3$$

$$2X - 4 = 8$$

$$2X + 3 = X - 5$$



$$2X - 4 = 8$$

$$2X + 3 = X - 5$$





# • • Distributive Property

- Use the same concept that was applied with multiplication of integers, think of the first factor as the counter.
- The same rules apply.3(X+2)
- Three is the counter, so we need three rows of (X+2)

#### • • Distributive Property

$$3(X + 2)$$



$$3(X - 4)$$

$$-2(X + 2)$$

$$-3(X-2)$$

# Modeling Polynomials

- Algebra tiles can be used to model expressions.
- Aid in the simplification of expressions.
- Add, subtract, multiply, divide, or factor polynomials.

#### Modeling Polynomials



# Modeling Polynomials

$$3x^{2} + 5y^{2}$$
 $-2xy$ 
 $-3x^{2} - 4xy$ 

 Textbooks do not always use x and y.
 Use other variables in the same format. Model these expressions.

$$-a^2 + 2ab$$
  
 $5p^2 - 3pq + q^2$ 

### More Polynomials

- Would not present previous material and this information on the same day.
- Let the blue square represent  $x^2$  and the large red square (flip-side) be  $-x^2$ .
- Let the green rectangle represent x and the red rectangle (flip-side) represent –x.
- Let yellow square represent 1 and the small red square (flip-side) represent –1.

# More Polynomials

- Represent each of the given expressions with algebra tiles.
- Draw a pictorial diagram of the process.
- Write the symbolic expression.

$$x + 4$$

### • • More Polynomials



## More Polynomials

- Use algebra tiles to simplify each of the given expressions. Combine like terms. Look for zero pairs. Draw a diagram to represent the process.
- Write the symbolic expression that represents each step.

$$2x + 4 + x + 2$$
  
 $-3x + 1 + x + 3$ 

## • • More Polynomials



# More Polynomials

$$3x + 1 - 2x + 4$$

 This process can be used with problems containing x<sup>2</sup>.

$$(2x^2 + 5x - 3) + (-x^2 + 2x + 5)$$

$$(2x^2 - 2x + 3) - (3x^2 + 3x - 2)$$

#### Multiplying Polynomials



### Multiplying Polynomials



# Multiplying Polynomials

$$(x + 2)(x - 3)$$

$$(x-2)(x-3)$$

- Algebra tiles can be used to factor polynomials. Use tiles and the frame to represent the problem.
- Use the tiles to fill in the array so as to form a rectangle inside the frame.
- Be prepared to use zero pairs to fill in the array.
- o Draw a picture.







#### Dividing Polynomials

- Algebra tiles can be used to divide polynomials.
- Use tiles and frame to represent problem. Dividend should form array inside frame. Divisor will form one of the dimensions (one side) of the frame.
- Be prepared to use zero pairs in the dividend.

# • • Dividing Polynomials

#### • • Dividing Polynomials

$$\frac{x^2 + 7x + 6}{x + 1}$$

#### • • Conclusion

"Polynomials are unlike the other "numbers" students learn how to add, subtract, multiply, and divide. They are not "counting" numbers. Giving polynomials a concrete reference (tiles) makes them real."

David A. Reid, Acadia University

