Euclidean Geometry Proofs

Eukleides c. 330 - 275 B.C.E.

History

- Thales (600 BC)
 - First to turn geometry into a logical discipline.
 - Described as the first Greek philosopher and the father of geometry as a deductive study.
 - Relied on rational thought rather than mythology to explain the world around him.
- Pythagoreans and other Greeks continued this rational train of thought.

History

- By the time of Euclid many things had been proved by Greek mathematicians.
 - However, these proofs were disorganized, each one starting from its own set of assumptions.
- Euclid organized many of these proofs and more that he came up with in his work *Elements*.
- Euclid is generally considered a great mathematician. But, In fact he was not. He was considered the best school teacher in history as written by Van der Waerden.
- He prepared his textbook that was for adult students, and made it so wonderful that over a thousand editions were made after 1492 when it was first printed.

School of Athens

 The most prominent persons are Platon, Aristotle, Socrates, Zoroaster, Pythagoras, Ptolemy. Raphael, Sodoma and Michelangelo are also present.

Why do we have to learn this? A student questioned Euclid and what they would get from learning the subject.

Then Euclid ordered someone to give him a penny.

"since he must gain from what he learns"

Euclid

- We don't know when he was born or died. We know that he was younger than students of Plato, but older than Archimedes, and that is all.
- One tells that when Ptolemy asked him about a short or quick way to learn geometry.
- Euclid answered there is no king's road in geometry.

The Elements

- Composed of thirteen parts or "books" (probably long papyrus scrolls)
 - Books I IV & VI are on plane geometry.
 - Books V & X are about magnitudes and ratios.
 - Books VII IX are about whole numbers.
 - Books XI XIII are about solid geometry.
- These thirteen books contained a total of 465 "propositions" or theorems.
 - Had a figure corresponding to each proposition followed by a careful proof.
 - The proof then ends with a restatement of the original proposition to be proved.

Relevance

- No other book except the *Bible* has been so widely translated and circulated.
- Early copy stored at the Vatican Library.
- Euclid's *Elements* was not just a mathematical step forward but was also a step forward in logical thinking.
- Things based on or influenced by the ideas of Euclid's *Elements*:
 - Descartes philosophical method.
 - Moving from basic principles to complex conclusions.
 - Newton and Spinoza used the form of Euclid's *Elements* to present their ideas.
 - Abraham Lincoln carried a copy of *Elements* with him in order to be a better lawyer.
 - The Declaration of Independence is based on "self evident" axioms used to prove the colonies are justified in forming the United States of America.

Euclid Today

- Today, a modified form of Euclid's *Elements* is used as the curriculum for sophomores in high school although the logic is slightly de-emphasized.
- The logic of Euclid's *Elements* is valid in many parts of modern life:
 - Such as collective bargaining agreements, computer systems, software development, and j dealing with social-political arguments.
- Basically, Euclid developed a way of organizing ideas in a logical manner that is still relevant today.

GEOMETRY PROOFS

GEOMERTRY : PROPERTIES

А.	REFLEXIVE PROPERTY-	A quantity is congruent (equal) to itself
	<u>Statements</u>	<u>Reasons</u>
B C A	1. $\overline{BC} \cong \overline{BC}$	1. <u>Reflexive</u> property
B.	TRANSITIVE PROPERTY-	If a=b and b=c, then a=c
	<u>Statements</u>	<u>Reasons</u>
	1. $\overline{AC} \cong \overline{CB}$ and $\overline{CB} \cong \overline{DB}$	1. Given
<u>Given:</u>		2 Transitiva proporti
$\overline{AC} \cong \overline{CB}$ and $\overline{CB} \cong \overline{DB}$	2. $AC \cong DB$	2. <u>Transitive</u> property
C.	SYMMETRIC PROPERTY-	If a=b, then b=a

GEOMETRY: Postulates

А.	ADDITION POSTULATE-	If equal quantities are added to equal quantities, the sums are equal
	<u>Statements</u>	Reasons
<u>Given:</u>	1. $\overline{BE} \cong \overline{DF}$ and $\overline{EC} \cong \overline{FC}$	1. Given
$\overline{BE} \cong \overline{DF}$ and $\overline{EC} \cong \overline{FC}$		2 Addition postulate
B	2. $\frac{BE + EC}{BC} \cong \frac{DF + FC}{DC}$	
D		
В.	SUBTRACTION POSTULATE-	<i>If equal quantities are subtracted from equal quantities, the differences are equal</i>
	<u>Statements</u>	Reasons
$\frac{\text{Given:}}{\overline{BC} \sim \overline{DC} \text{ and } \overline{EC} \sim EC$	1. $\overline{BC} \cong \overline{DC}$ and $\overline{EC} \cong \overline{FC}$	1. Given
$BC \equiv DC$ and $EC \equiv PC$	2. $\frac{\overline{BC} - \overline{EC}}{\overline{BE} \cong \overline{DF}} \cong \overline{DC} - \overline{FC}$	2. <u>Subtraction</u> postulate
D F C		

GEOMERTRY : DEFINITIONS

A.	DEFINITION OF MIDPOINT-	A point on a line segment that divides the segment into two congruent segments
	<u>Statements</u>	Reasons
<u>Given:</u>		
E is the midpoint of \overline{BD}	1.E is the <i>midpoint</i> of \overline{BD}	1. Given
	2. $\overline{BE} \cong \overline{DE}$	2. Definition of <u>midpoint</u>
B.	DEFINITION OF MEDIAN-	A line segment that joins any vertex of the triangle to the <u>midpoint</u> of the opposite side.
	<u>Statements</u>	Reasons
$\frac{\text{Given:}}{\overline{MF}}$ is the median of \overline{DR}	1. \overline{MF} is the median of \overline{DR}	1. Given
M	2. F is the <u>midpoint</u> of \overline{DR}	2. Definition of <u>median</u>
	3. $\overline{DF} \cong \overline{RF}$	3. Definition of <u>midpoint</u>
F		

C.	DEFINITION OF VERTICAL ANGLES-	When two lines
		intersect vertical
		ungles ure johneu.
	Statements	Reasons
В	$_{1}$ \angle BEA and \angle DEC are vertical angles	1. If two lines
		intersect then
E		<u>vertical angles</u> are
		formed
	$A = A \approx A = A = A$	
A D	2. $\angle DEA = \angle DEC$	2. <u>Vertical angles</u>
_		are congruent
	I	
D.	DEFINITION OF PERPENDICULAR	two lines that
D.	DEFINITION OF PERPENDICULAR LINES-	two lines that intersect to form
D.	DEFINITION OF PERPENDICULAR LINES-	two lines that intersect to form <u>right angles</u>
D.	DEFINITION OF PERPENDICULAR LINES- Statements	two lines that intersect to form <u>right angles</u> <u>Reasons</u>
D. <u>Given:</u> $\overline{CB} \perp \overline{DA}$	$\frac{\text{DEFINITION OF PERPENDICULAR}}{\text{LINES-}}$ $\frac{\text{Statements}}{1 \overline{CB} \mid \overline{DA}}$	two lines that intersect to form <u>right angles</u> <u>Reasons</u> 1. Given
D. <u>Given: $\overline{CB} \perp \overline{DA}$</u>	$\frac{\text{DEFINITION OF PERPENDICULAR}}{\text{LINES-}}$ $\frac{\text{Statements}}{1. \overline{CB} \perp \overline{DA}}$ $(CDD \text{ and } (CD \text{ A are might and } 1)$	two lines that intersect to form <u>right angles</u> <u>Reasons</u> 1. Given 2. Definition of
D. <u>Given:</u> $\overline{CB} \perp \overline{DA}$	DEFINITION OF PERPENDICULAR LINES- Statements 1. $\overline{CB} \perp \overline{DA}$ 2. $\angle CBD$ and $\angle CBA$ are right angles	two lines that intersect to form <u>right angles</u> <u>Reasons</u> 1. Given 2. Definition of <u>perpendicular</u>
D. <u>Given:</u> $\overline{CB} \perp \overline{DA}$ <u>C</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u> <u>C</u>	DEFINITION OF PERPENDICULAR LINES- Statements 1. $\overline{CB} \perp \overline{DA}$ 2. $\angle CBD$ and $\angle CBA$ are right angles	two lines that intersect to form <u>right angles</u> <u>Reasons</u> 1. Given 2. Definition of <u>perpendicular</u> <u>lines</u>
D. $ \underline{Given: \overline{CB} \perp \overline{DA}} $ $ \underbrace{CB}_{B} \perp \overline{DA}_{A} $	DEFINITION OF PERPENDICULAR LINES- Statements 1. $\overline{CB} \perp \overline{DA}$ 2. ∠CBD and ∠CBA are right angles 3. ∠CBD ≅ ∠CBA	two lines that intersect to form <u>right angles</u> <u>Reasons</u> 1. Given 2. Definition of <u>perpendicular</u> <u>lines</u> 3. All <u>right angles</u>
D. $ \underline{Given: \overline{CB} \perp \overline{DA}} $ $ \underbrace{c}_{B} \qquad A $	DEFINITION OF PERPENDICULAR LINES- Statements 1. $\overline{CB} \perp \overline{DA}$ 2. $\angle CBD$ and $\angle CBA$ are right angles 3. $\angle CBD \cong \angle CBA$	two lines that intersect to form <u>right angles</u> <u>Reasons</u> 1. Given 2. Definition of <u>perpendicular</u> <u>lines</u> 3. All <u>right angles</u> are congruent

E.	DEFINITION OF ALTITUDE-	A line segment drawn from any vertex of the triangle, perpendicular to and ending in the line that contains the opposite side.
	<u>Statements</u>	<u>Reasons</u>
<u>Given:</u>	1. \overline{EF} is the altitude of $\triangle DER$	1. Given
\overline{EF} is the altitude of $\triangle DER$	2. $\overline{EF} \perp \overline{DR}$	2. Definition of <u>altitude</u>
E	3. $\angle EFD$ and $\angle EFR$ are right angles	3. Definition of <u>perpendicular</u> <u>lines</u>
D F R	$4. \angle EFD \cong \angle EFR$	4. All <u>right angles</u> are congruent

F.	DEFINITION OF ANGLE BISECTOR-	A ray whose endpoint is the vertex of the angle, and that divides that angle into two congruent angles.
	<u>Statements</u>	<u>Reasons</u>
<u>Given:</u>	1. \overline{AH} bisects \angle MAT	1. Given
\overline{AH} bisects $\angle MAT$		
A T H M	2. $\angle MAT \cong \angle TAH$	2. Definition of <u>angle bisector</u>
G.	DEFINITION OF SEGMENT	Any line, or subset of a line,
	BISECTOR-	that intersects the segment at
		its midpoint.
	<u>Statements</u>	<u>Reasons</u>
<u>Given:</u> \overline{AH} bisects \overline{MT}	1. \overline{AH} bisects \overline{MT}	1. Given
A T H	2. <i>MH</i> ≅ <i>TH</i>	2. Definition of <u>segment</u> <u>bisector</u>

H.	DEFINITION OF PERPENDICULAR BISECTOR-		An the	y line, or subset of a line, at is perpendicular to the line
	Cto		seg	gment at its midpoint.
	<u>Sta</u>	All is the norman disular bisactor	<u>ke</u> 1	<u>asons</u> Given
$\frac{Given:}{\overline{AH}}$ is the perpendicular bisector of \overline{MT}	1.	of \overline{MT}	ı. 2.	Definition of <u>perpendicular</u>
A	2.	$\angle AHM$ and $\angle AHT$ are right angles	3.	All <u>right angles</u> are congruent
T	3. 4.	$\angle AHM \cong \angle AHI$ $\overline{MH} \cong \overline{TH}$	4.	Definition of <u>segment</u> <u>bisector</u>
H M				

A. BASE ANGLE THEOREM-(ISOSCELES TRIANGLE)

If two sides of a triangle are congruent, then the angles opposite these sides are congruent.

	<u>Statements</u>	<u>Reasons</u>
<u>Given:</u>	1. $\overline{CD} \cong \overline{CA}$	1. Given
$\overline{CD} \cong \overline{CA}$	2. $\angle A \cong \angle D$	2. If two sides of a triangle are congruent, then the angles opposite these sides are congruent.
B.	CONVERSE OF THE BASE ANGLE	If two angles of a triangle are
	<u>THEOREM – (ISOSCELES</u>	congruent, then the sides opposite
	TRIANGLE)	these angles are congruent.
	<u>Statements</u>	<u>Reasons</u>
Given:	1. $\angle A \cong \angle D$	1. Given
$\angle A \cong \angle D$	2. $\overline{CD} \cong \overline{CA}$	 If two angles of a triangle are congruent, then the sides opposite these angles are congruent.

C.	CONGRUENT SUPPLEMENTS-	If two angles are supplementary to the same angle (or to congruent angles), then the two angles are congruent.
		<u>Or</u> <i>"Supplements of congruent angles</i> <i>are congruent"</i>
	<u>Statements</u>	<u>Reasons</u>
<u>Given:</u> $\angle 2 \cong \angle 1$	1. $\angle 2 \cong \angle 1$	1. Given
	 ∠2 is supplementary to ∠3 ∠1 is supplementary to ∠4 ∠3 ≅ ∠4 	 If two angles for a linear pair, then they are supplementary Supplements of congruent angles are congruent

GEOMERTRY : Postulates used to prove triangles are congruent.

If 3 sides of one Δ are \cong to 3 sides of another Δ , then the Δ s are \cong .

Side-Angle-Side (SAS) Postulate

7

If 2 sides and the included \angle of one Δ are \cong to 2 sides and the included \angle of another Δ , then the 2 Δ s are \cong .

Definition – Included Angle

What is the included angle for sides KL and JL?

ZL

∠K is the angle between JK and KL. It is called the *included angle* of sides JK and KL.

Side-Angle-Side (SAS) Postulate

7

If 2 sides and the included \angle of one Δ are \cong to 2 sides and the included \angle of another Δ , then the 2 Δ s are \cong .

Angle-Side-Angle (ASA) Postulate

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the triangles are congruent.

Angle-Angle-Side (AAS) Theorem

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the triangles are congruent.

Given: BD \perp AC and AD \cong DC			
Prove: \triangle ADB \cong \triangle CDB.			
<u>Statements</u>	Reasons		
1. BD \perp AC; AD \cong DC	1. Given		
2.∠ADB & ∠CDB are right ∠s	2. Definition of \perp lines		
3. \angle ADB \cong \angle CDB	3. All right angles are \cong .		
4. DB \cong DB	4.Reflexive Property		
5. \triangle ADB \cong \triangle CDB	5. SAS \cong SAS		

В

Given: N is the midpoint of LW N is the midpoint of SK	
Prove: $\triangle LNS \cong \triangle WNK$	W
Statements	Reasons
1. N is the midpoint of LW N is the midpoint of SK	1. Given
2. $\overline{LN} \cong \overline{NW}$, $\overline{SN} \cong \overline{NK}$	2. Definition of Midpoint
3. $\angle LNS \& \angle WNK$ are vertical angles	3. If two lines intersect, then vertical angles are formed.
$4. \angle LNS \cong \angle WNK$	4. Vertical Angles are congruent
5. $\triangle LNS \cong \triangle WNK$	5. SAS Postulate

Given: BD is an altitude; BD is a median Prove: \triangle ADB $\cong \triangle$ CDB.

<u>Statements</u>

- 1. BD is a altitude
- **2.** DB \perp AC
- **3.∠ADB & ∠CDB are right ∠s**
- $\mathbf{4.}\angle \mathbf{ADB} \cong \angle \mathbf{CDB}$
- 5. BD is a median
- 6. D is a midpoint of AC
- **7.** AD \cong DC
- **8.** BD \cong BD
- **9.** \triangle ADB \cong \triangle CDB

Reasons

- 1. Given
- 2. Definition of Altitude
- **3.** Definition of \perp lines.
- 4. All right angles are \cong .
- 5. Given
- 6. Definition of median
- 7. Definition of midpoint
- 8. Reflexive
- **9. SAS**

Given: **BD bisects** \angle **ABC**; **AB** \cong **BC** Prove: \triangle ADB \cong \triangle CDB.

Statements

- **1. BD bisects ∠ABC**
- **2.** $\angle ABD \cong \angle CBD$
- **3.** AB \cong BC
- $\mathbf{4.}\angle\mathbf{BAD}\cong\angle\mathbf{BCD}$

5. \triangle ADB \cong \triangle CDB

Reasons

- 1. Given
- **2.** Definition of angle bisector
- 3. Given
- 4. If two sides of a triangle are ≅ then the angles opposite those sides are ≅.

5. SAS

Given: BD bisects ∠ABC	B A
BD is an altitude	
Prove: \triangle ADB \cong \triangle CDB	
<u>Statements</u>	Reasons A/
1. BD is a altitude	1. Given
2. DB ⊥ AC	2. Definition of Altitude
3.∠ADB & ∠CDB are right ∠s	3. Definition of \perp lines.
4.∠ADB≅∠CDB	4. All right angles are \cong .
5. BD bisects ∠ABC	5. Given
6. ∠ABD ≅ ∠CBD	6. Definition of angle bisector
7. BD \simeq BD	7. Reflexive
8. $\triangle ADB \cong \triangle CDB$	8. ASA

Proof:		B	C Given: AD $\parallel EC$, BD \cong BC Prove: $\triangle ABD \cong \triangle EBC$ and $AB \cong BE$
Statements:		Reasons:	
1.	$BD\congBC$	1.	Given
2.	∠ABD & ∠EBC are vertical angles	2.	Intersecting lines form vertical angles.
3.	∠ABD ≅ ∠EBC	3.	Vertical angles are congruent.
4.	AD EC	4.	Given
5.	∠D ≅ ∠C	5.	If two lines are cut by a transversal, then Alternate Interior Angles are congruent
6.	$\triangle ABD \cong \triangle EBC$	6.	ASA
7.	$AB \cong BE$	7.	CPCTC

Given: BC \perp CD; CD \perp DE _B				
. C				
1. Given				
2. Definition of \perp lines.				
3. All right angles are \cong .				
4. Given				
5. Definition of segment bisector				
6. If two lines intersect				
vertical \angle s are formed.				
7. Vertical angles are \cong .				
8. ASA				

Given: AB \perp BF ; EF \perp BF ;BD \cong CF; AB \cong EF				
BD is an altitude				
Prove: \triangle ABC $\cong \triangle^{\mathbb{B}}$ EFD.				
<u>Statements</u>	Reasons			
1. AB ⊥BF ; EF ⊥BF	1. Given			
2.∠ABC & ∠EFD are right ∠s	2. Definition of \perp lines.			
3.∠ABC≅∠EFD	3. All right angles are \cong .			
4. $AB \cong EF$	4. Given			
5. BD \cong CF	5. Given			
6. $CD \cong CD$	6. Reflexive			
7. $BD - CD \cong CF - CD$	7. Subtraction Postulate			
$BC \cong DF$				
8. \triangle ABC \cong \triangle EFD	8. ASA			

References

- http://www.es.flinders.edu.au/~mattom/science+society/lectures/illustrat ions/lecture8/thales.html
- http://schools.techno.ru/sch758/geometr/Euclid.htm
- http://www.smokelong.com/images/euclid.jpg
- W. P. Belinghoff, F. Q. Gouvêa. (2002). *Math Through The Ages*. Oxton House Publishers, LLC: Farmington, ME.
- http://www.whatreallyhappened.com/DECLARATION/us_declarationE.jpg
- http://www.cooperativeindividualism.org/lincoln-abraham.jpg
- http://www.siu.edu/~pulfrich/Pulfrich_Pages/lit_pulf/nick_thm/Parabola. gif