Euclidean Geometry Proofs

History

- Thales (600 BC)
- First to turn geometry into a logical discipline.
- Described as the first Greek philosopher and the father of geometry as a deductive study.
- Relied on rational thought rather than mythology to explain the world around him.
- Pythagoreans and other Greeks continued this rational train of thought.

History

- By the time of Euclid many things had been proved by Greek mathematicians.
- However, these proofs were disorganized, each one starting from its own set of assumptions.
- Euclid organized many of these proofs and more that he came up with in his work Elements.
- Euclid is generally considered a great mathematician. But, In fact he was not. He was considered the best school teacher in history as written by Van der Waerden.
- He prepared his textbook that was for adult students, and made it so wonderful that over a thousand editions were made after 1492 when it was first printed.

School of Athens

- The most prominent persons are Platon, Aristotle, Socrates, Zoroaster, Pythagoras, Ptolemy. Raphael, Sodoma and Michelangelo are also present.

Why do we have to learn this?

A student questioned Euclid and what they would get from learning the subject.

Then Euclid ordered someone to give him a penny.

"since he must gain from what he learns"

Euclid

- We don't know when he was born or died. We know that he was younger than students of Plato, but older than Archimedes, and that is all.
- One tells that when Ptolemy asked him about a short or quick way to learn geometry.
- Euclid answered there is no king's road in
 geometry.

The Elements

- Composed of thirteen parts or "books" (probably long papyrus scrolls)
- Books I - IV \& VI are on plane geometry.
- Books V \& X are about magnitudes and ratios.
- Books VII - IX are about whole numbers.
- Books XI - XIII are about solid geometry.
- These thirteen books contained a total of 465 "propositions" or theorems.
- Had a figure corresponding to each proposition followed by a careful proof.
- The proof then ends with a restatement of the original proposition to be proved.

Relevance

- No other book except the Bible has been so widely translated and circulated.
- Early copy stored at the Vatican Library.
- Euclid's Elements was not just a mathematical step forward but was also a step forward in logical thinking.
- Things based on or influenced by the ideas of Euclid's Elements:
- Descartes philosophical method.
- Moving from basic principles to complex conclusions.
- Newton and Spinoza used the form of Euclid's Elements to present their ideas.
- Abraham Lincoln carried a copy of Elements with him in order to be a better lawyer.
- The Declaration of Independence is based on "self evident" axioms used to prove the colonies are justified in forming
 the United States of America.

Euclid Today

- Today, a modified form of Euclid's Elements is used as the curriculum for sophomores in high school although the logic is slightly de-emphasized.
- The logic of Euclid's Elements is valid in many parts of modern life:
- Such as collective bargaining agreements, computer systems, software development, and dealing with social-political arguments.
- Basically, Euclid developed a way of organizing ideas in a logical manner that is still relevant today.

BEOMER PROD:8

A:OMERTLIM: PROPERTILS

A.	REFLEXIVE PROPERTY-	A quantity is congruent (equal) to itself
	Statements	Reasons
	1. $\overline{B C} \cong \overline{B C}$	1. Reflexive property
B. TRANSITIVE PROPERTY-		If $a=b$ and $b=c$, then $a=c$
	Statements	Reasons
Given: $\overline{A C} \cong \overline{C B} \text { and } \overline{C B} \cong \overline{D B}$	1. $\overline{A C} \cong \overline{C B}$ and $\overline{C B} \cong \overline{D B}$ 2. $\overline{A C} \cong \overline{D B}$	1. Given 2. Transitive property
C. SYMMETRIC PROPERTY-		If $a=b$, then $b=a$

	A. ADDITION POSTULATE-	If equal quantities are added to equal quantities, the sums are equal
	Statements	Reasons
Given: $\overline{B E} \cong \overline{D F} \text { and } \overline{E C} \cong \overline{F C}$	1. $\overline{B E} \cong \overline{D F}$ and $\overline{E C} \cong \overline{F C}$ 2. $\begin{aligned} & \overline{B E}+\overline{E C} \cong \overline{D F}+\overline{F C} \\ & \overline{B C} \cong \overline{D C}\end{aligned}$	1. Given 2. Addition postulate
	B. SUBTRACTION POSTULATE-	If equal quantities are subtracted from equal quantities, the differences are equal
	Statements	Reasons
Given: $\overline{B C} \cong \overline{D C}$ and $\overline{E C} \cong F C$	1. $\overline{B C} \cong \overline{D C}$ and $\overline{E C} \cong \overline{F C}$ 2. $\overline{B C}-\overline{E C} \cong \overline{D C}-\overline{F C}$ $\overline{B E} \cong \overline{D F}$	1. Given 2. Subtraction postulate

AEOMERTHY: DEANITIONS

A. DEFINITION OF MIDPOINT-

A point on a line segment that divides the segment into two congruent segments

	Statements	Reasons
Given: E is the midpoint of $\overline{B D}$	1.E is the midpoint of $\overline{B D}$ 2. $\overline{B E} \cong \overline{D E}$	1. Given 2. Definition of midpoint
B. DEFINITION OF MEDIAN-		A line segment that joins any vertex of the triangle to the midpoint of the opposite side.
	Statements	Reasons
Given: $\overline{M F}$ is the median of $\overline{D R}$	1. $\overline{M F}$ is the median of $\overline{D R}$ 2. Fis the midpoint of $\overline{D R}$ 3. $\overline{D F} \cong \overline{R F}$	1. Given 2. Definition of median 3. Definition of midpoint

C. DEFINITION OF VERTICAL ANGLES-

When two lines intersect vertical angles are formed.

	Statements	Reasons
	1. $\angle \mathrm{BEA}$ and $\angle \mathrm{DEC}$ are vertical angles 2. $\angle \mathrm{BEA} \cong \angle \mathrm{DEC}$	1. If two lines intersect then vertical angles are formed 2. Vertical angles are congruent
D. DEFINITION OF PERPENDICULAR LINES-		two lines that intersect to form right angles
	Statements	Reasons
Given: $\overline{C B} \perp \overline{D A}$	1. $\overline{C B} \perp \overline{D A}$ 2. $\angle \mathrm{CBD}$ and $\angle \mathrm{CBA}$ are right angles 3. $\angle \mathrm{CBD} \cong \angle \mathrm{CBA}$	1. Given 2. Definition of perpendicular lines 3. All right angles are congruent

E. DEFINITION OF ALTITUDE-		A line segment drawn from any vertex of the triangle, perpendicular to and ending in the line that contains the opposite side.
	Statements	Reasons
Given: $\overline{E F}$ is the altitude of $\triangle \mathrm{DER}$	1. $\overline{E F}$ is the altitude of $\triangle \mathrm{DER}$ 2. $\overline{E F} \perp \overline{D R}$ 3. $\angle E F D$ and $\angle E F R$ are right angles 4. $\angle E F D \cong \angle E F R$	1. Given 2. Definition of altitude 3. Definition of perpendicular lines 4. All right angles are congruent

F. DEFINITION OF ANGLE BISECTOR-		A ray whose endpoint is the vertex of the angle, and that divides that angle into two congruent angles.
	Statements	Reasons
Given:	1. $\overline{A H}$ bisects $\angle \mathrm{MAT}$ 2. $\angle M A T \cong \angle T A H$	1. Given 2. Definition of angle bisector
G. DEFINITION OF SEGMENT BISECTOR-		Any line, or subset of a line, that intersects the segment at its midpoint.
	Statements	Reasons
	1. $\overline{A H}$ bisects $\overline{M T}$ 2. $\overline{M H} \cong \overline{T H}$	1. Given 2. Definition of segment bisector

	DEFINITION OF PERPENDICULAR BISECTOR-	Any line, or subset of a line, that is perpendicular to the line segment at its midpoint.
	Statements	Reasons
Given: $\overline{A H}$ is the perpendicular bisector of $\overline{M T}$	1. $A H$ is the perpendicular bisector of $\overline{M T}$ 2. $\angle A H M$ and $\angle A H T$ are right angles 3. $\angle A H M \cong \angle A H T$ 4. $\overline{M H} \cong \overline{T H}$	1. Given 2. Definition of perpendicular lines 3. All right angles are congruent 4. Definition of segment bisector

A. BASE ANGLE THEOREM(ISOSCELES TRIANGLE)

If two sides of a triangle are congruent, then the angles opposite these sides are congruent.

	$\underline{\text { Statements }}$	Reasons
$\overline{C D} \cong \overline{C A}$	1. $\overline{C D} \cong \overline{C A}$	1. Given Given:

B. CONVERSE OF THE BASE ANGLE THEOREM - (ISOSCELES TRIANGLE)

If two angles of a triangle are congruent, then the sides opposite these angles are congruent.

	Statements	Reasons
$\angle A \cong \angle D$	1. $\angle A \cong \angle D$	1. Given

C. CONGRUENT SUPPLEMENTS-		If two angles are supplementary to the same angle (or to congruent angles), then the two angles are congruent. Or "Supplements of congruent angles are congruent"
	Statements	Reasons
Given: $\angle 2 \cong \angle 1$	1. $\angle 2 \cong \angle 1$ 2. $\angle 2$ is supplementary to $\angle 3$ $\angle 1$ is supplementary to $\angle 4$ 3. $\angle 3 \cong \angle 4$	1. Given 2. If two angles for a linear pair, then they are supplementary 3. Supplements of congruent angles are congruent

G:OMERTBY : Postulatos used to Drove trangles ale congracil.

Side-Side-Side (SSS)

Postulate

If $\mathbf{3}$ sides of one Δ are \cong to 3 sides of another Δ, then the Δs are \cong.

Side-Angle-Side (SAS) Postulate

If 2 sides and the included \angle of one Δ are \cong to 2 sides and the included \angle of another Δ, then the $2 \Delta s$ are \cong.

Definition - Included Angle

$\angle \mathrm{K}$ is the angle between JK and KL. It is called the included angle of sides JK and KL.

What is the included angle for sides KL and JL?

Side-Angle-Side (SAS) Postulate

If 2 sides and the included \angle of one Δ are \cong to 2 sides and the included \angle of another Δ, then the $2 \Delta s$ are \cong.

Angle-Side-Angle (ASA) Postulate

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle,
 then the triangles are congruent.

Angle-Angle-Side (AAS) Theorem

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the triangles are congruent.

SSA?

Given: $B D \perp A C$ and $A D \cong D C$

 Prove: $\triangle A D B \cong \triangle C D B$.
Statements

2. $\angle \mathrm{ADB}$ \& $\angle \mathrm{CDB}$ are right $\angle \mathrm{s}$ 3. $\angle \mathrm{ADB} \cong \angle \mathrm{CDB}$ 4. $\mathrm{DB} \cong \mathrm{DB}$
3. $\Delta \mathrm{ADB} \cong \triangle C D B$

Reasons

1. Given

2. Definition of \perp lines
3. All right angles are \cong.
4.Reflexive Property
4. SAS \cong SAS

Given: N is the midpoint of LW N is the midpoint of SK

Prove: $\triangle L N S \cong \triangle W N K$

Statements

1. N is the midpoint of LW N is the midpoint of SK
2. $\overline{L N} \cong \overline{N W}, \quad \overline{S N} \cong \overline{N K}$
3. $\angle L N S \& \angle W N K$ are vertical angles
4. $\triangle L N S \cong \triangle W N K$

Given: $B D$ is an altitude; Prove: $\triangle A D B \cong \triangle C D B$.

Statements

1. $B D$ is a altitude
2. $\mathrm{DB} \perp \mathrm{AC}$
3. $\angle \mathrm{ADB}$ \& $\angle \mathrm{CDB}$ are right $\angle \mathrm{s}$ 4. $\angle \mathrm{ADB} \cong \angle \mathrm{CDB}$
4. BD is a median
5. D is a midpoint of $A C$
6. $A D \cong D C$
7. BD $\cong B D$
8. $\triangle \mathrm{ADB} \cong \Delta \mathrm{CDB}$

Reasons

1. Given
2. Definition of Altitude 3. Definition of \perp lines. 4. All right angles are \cong.
3. Given
4. Definition of median
5. Definition of midpoint
6. Reflexive
7. SAS

Given: $B D$ bisects $\angle A B C ; A B \cong B C$ Prove: $\triangle A D B \cong \triangle C D B$.

Statements

1. BD bisects $\angle A B C$
2. $\angle \mathrm{ABD} \cong \angle \mathrm{CBD}$
3. $\mathrm{AB} \cong \mathrm{BC}$
4. $\angle \mathrm{BAD} \cong \angle B C D$
5. $\triangle \mathrm{ADB} \cong \triangle \mathrm{CDB}$

Reasons
2. Definition of angle bisector
3. Given
4. If two sides of a triangle are \cong then the angles opposite those sides are \cong.
5. SAS

1. Given

Given: BD bisects $\angle A B C$;

$B D$ is an altitude Prove: $\triangle A D B \cong \triangle C D B$.

Statements

1. $B D$ is a altitude
2. $\mathrm{DB} \perp \mathrm{AC}$
3. $\angle \mathrm{ADB}$ \& $\angle \mathrm{CDB}$ are right $\angle \mathrm{s}$ 4. $\angle \mathrm{ADB} \cong \angle \mathrm{CDB}$
4. BD bisects $\angle \mathrm{ABC}$ 6. $\angle \mathrm{ABD} \cong \angle \mathrm{CBD}$
5. $\mathrm{BD} \cong \mathrm{BD}$
6. $\triangle \mathrm{ADB} \cong \triangle C D B$

Reasons

1. Given
2. Definition of Altitude
3. Definition of \perp lines.
4. All right angles are \cong.
5. Given
6. Definition of angle bisector
7. Reflexive
8. ASA

Proof:

Given: $A D \| E C, B D \cong B C$ Prove: $\triangle \mathrm{ABD} \cong \triangle \mathrm{EBC}$ and $A B \cong B E$

Statements:

1. $B D \cong B C$
2. $\angle \mathrm{ABD} \& \angle \mathrm{EBC}$ are vertical angles
3. $\angle \mathrm{ABD} \cong \angle \mathrm{EBC}$
4. $A D \| E C$
5. $\angle \mathrm{D} \cong \angle C$
6. $\triangle \mathrm{ABD} \cong \triangle \mathrm{EBC}$
7. $A B \cong B E$

Reasons:

1. Given
2. Intersecting lines form vertical angles.
3. Vertical angles are congruent.
4. Given
5. If two \|lines are cut by a transversal, then Alternate Interior Angles are congruent
6. ASA
7. CPCTC

Given: $\mathrm{BC} \perp \mathrm{CD} ; \mathrm{CD} \perp \mathrm{DE}_{\mathrm{B}}$ BE bisects CD
Prove: $\triangle \mathrm{BCA} \cong \triangle \mathrm{EDA}$.

Statements

1. $\mathrm{BC} \perp \mathrm{CD} ; \mathrm{CD} \perp \mathrm{DE}$
2. $\angle \mathrm{ACB}$ \& $\angle \mathrm{ADE}$ are right $\angle \mathrm{s}$
3. $\angle \mathrm{ACB} \cong \angle \mathrm{ADE}$
4. BE bisects CD
5. $\mathrm{AC} \cong \mathrm{AD}$
6. $\angle B A C \& \angle E A D$ are vertical $\angle s$
7. $\angle \mathrm{BAC} \cong \angle \mathrm{EAD}$
8. $\triangle \mathrm{ADB} \cong \triangle \mathrm{CDB}$

Reasons

1. Given
2. Definition of \perp lines.
3. All right angles are \cong.
4. Given
5. Definition of segment bisector
6. If two lines intersect vertical $\angle \mathrm{s}$ are formed.
7. Vertical angles are \cong. 8. ASA

Given: $A B \perp B F ; E F_{A} \perp B F ; B D \cong C F ; A B \cong E F$
$B D$ is an altitude Prove: $\triangle A B C \cong \Delta^{B} E F D$.

Statements Reasons

1. $A B \perp B F ; E F \perp B F$
2. $\angle \mathrm{ABC}$ \& $\angle \mathrm{EFD}$ are right $\angle \mathrm{s}$
3. $\angle \mathrm{ABC} \mathrm{\cong} \cong \angle \mathrm{EFD}$
4. $\mathrm{AB} \cong \mathrm{EF}$
5. $\mathrm{BD} \cong \mathrm{CF}$
6. CD $\cong C D$
7. $\mathrm{BD}-\mathrm{CD} \cong \mathrm{CF}-\mathrm{CD}$

$$
B C \cong D F
$$

8. $\triangle \mathrm{ABC} \cong \triangle E F D$
9. Given
10. Definition of \perp lines.
11. All right angles are \cong.
12. Given
13. Given
14. Reflexive
15. Subtraction Postulate
16. ASA

Eukleides 0.330-275 B.C.E.

References

- http://www.es.flinders.edu.au/~mattom/science+society/lectures/illustrat ions/lecture8/thales.html
- http://schools.techno.ru/sch758/geometr/Euclid.htm
- http://www.smokelong.com/images/euclid.jpg
- W. P. Belinghoff, F. Q. Gouvêa. (2002). Math Through The Ages. Oxton House Publishers, LLC: Farmington, ME.
- http://www.whatreallyhappened.com/DECLARATION/us_declarationE.jpg
- http://www.cooperativeindividualism.org/lincoln-abraham.jpg
- http://www.siu.edu/~pulfrich/Pulfrich_Pages/lit_pulf/nick_thm/Parabola. gif

