Euclidean Algorithm

Algorithm for finding GCD

- This method is the Euclidean Algorithm named of Euclid who describes this algorithm in his book Elements.
- This same method for finding the greatest common divisor was also described in the sixth century by the Indian mathematician Aryabhata, who called this method
"the pulverizer"
- If e and d are integers and $e=d q+r$, where q and r are integers, then $(e, d)=(d, r)$
- Example: 20 and 8 are integers,
- $20=8(1)+12$ then $(20,8)=(8,12)$
- $20=8(2)+4$ then $(20,8)=(8,4)$

Ok, let's try the Euclidean Algorithm

- $(75,45)$
- $75=45^{*} 1+30$
- $45=30 * 1+15$
- $30=15^{*} 2+0$
- therefore $(75,45)=15$
- $(222,102)$
- $222=102 * 2+18$
- $102=18 * 5+12$
- $18=12^{*} 1+6$
- $12=6 * 2+0$
- therefore $(222,102)=6$
- $(1234,981)$
- $1234=981^{*} 1+253$
- $981=253^{*} 3+222$
- $253=222^{*} 1+31$
- $222=31^{*} 7+5$
- $31=5^{*} 6+1$
- $5=1^{*} 5+0$
- therefore $(1234,981)=1$

