Ratios

Problem

A person travels 30 mph to the city, and 50 mph back. What is the average rate?

$30+50$ not true!!!! 2

Specific Case

Rate $=\frac{\text { distance }}{\text { time }}$
 time

Assume 150 miles each way.
30 mph to the city, and 50 mph back. 5 hours to get there, 3 hours back, 8 total hours

$$
\frac{300}{8}=\frac{150}{4}=\frac{75}{2}=37.5
$$

Can we write this in a general form?

$$
\begin{aligned}
& \stackrel{S}{a} t_{1}=\frac{\text { distance }}{\text { time }}=\frac{S}{a} \\
& \stackrel{s}{b} t_{2}=\frac{\text { distance }}{\text { time }}=\frac{S}{b} \\
& \frac{2 S}{\frac{S}{a}+\frac{S}{b}}=\frac{2 a b}{a+b}
\end{aligned}
$$

This is the harmonic mean.

- Arithmetic mean $\frac{a+b}{2}$
- Geometric mean $\sqrt{a b}$
- Harmonic mean $\frac{2 a b}{a+b}$

Which is bigger the arithmetic or the harmonic?

Prove It
$\frac{a+b}{2} \vee \frac{2 a b}{a+b}$ let us get common denominators, and compare numerators
$(a+b)^{2} \vee 4 a b$
$a^{2}+2 a b+b^{2} \vee 4 a b$
$a^{2}+b^{2} \vee 2 a b$
$a^{2}-2 a b+b^{2} \vee 0$
$(a-b)^{2} \vee 0$
$(a-b)^{2} \geq 0$ Therefore the arithmetic mean is always greater than the harmonic mean

